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A mathematical analysis of the distortion tolerance in correlation filters is presented. A good measure
for distortion performance is shown to be a generalization of the minimum average correlation energy
criterion. To optimize the filter's performance, we remove the usual hard constraints on the outputs in
the synthetic discriminant function formulation. The resulting filters exhibit superior distortion
tolerance while retaining the attractive features of their predecessors such as the minimum average
correlation energy filter and the minimum variance synthetic discriminant function filter. The proposed
theory also unifies several existing approaches and examines the relationship between different
formulations. The proposed filter design algorithm requires only simple statistical parameters and the
inversion of diagonal matrices, which makes it attractive from a computational standpoint. Several
properties of these filters are discussed with illustrative examples.

1. Introduction
Ever since the first use of the optical correlator for
implementing matched spatial filters by VanderLugt,I
researchers have been trying to develop better filters
for the recognition of shapes and objects. Such
filters are popularly referred to as correlation filters
since they are designed for implementation in correla-
tors. A notable contribution to this field was the
formulation of the synthetic discriminant function2

(SDF), which permitted several references or training
patterns to be included in the same filter. SDF's are
not the only type of correlation filters to be developed
in recent years. Among the filters proposed in the
past decade are circular-harmonic filters3 which offer
in-plane rotation invariance, and the phase-only fil-
ter4 and its variations, which are well suited for
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implementation on existing spatial light modulators.
However, our concern in this paper is limited to
SDF-type filters,5 which are useful for the recognition
of objects in the presence of arbitrary distortions
caused by changes in viewing angle, scale, and orien-
tation. Since no restrictions are placed on the mag-
nitude or the phase function of the fully complex
SDF's in the frequency domain, all degrees of free-
dom are available to optimize the performance of
these filters. Consequently SDF's may serve as
benchmarks for other types of correlation filters that
are designed to accommodate restrictions of the
optical systems.

The three primary issues to deal with in the design
of correlation filters are (i) the ability to suppress
clutter and noise, (ii) easy detection of the correlation
peak, and (iii) distortion tolerance. Earlier SDF's5,6

were unable to offer optimum performance with
regard to any of these criteria. The first break-
through in the rigorous development of SDF theory
came with the advancement of the minimum variance
synthetic discriminant function7 (MVSDF) by Kumar.
The MVSDF was shown to be the optimum filter for
minimizing the effects of additive noise. Although
the MVSDF was impractical because of the need for
inverting a large covariance matrix, the optimization
approach opened the doorway for the advancement of
SDF theory. Kumar and Bahri8 described a general
framework that encompassed the entire space of
possible solutions for SDF's. Following this work,
Mahalanobis et al. proposed the minimum average
correlation energy9 (MACE) filter, which produced
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sharp peaks for easy detection of the filter output.
The MACE filter is generally known to be sensitive to
distortions but readily able to suppress clutter.10
Another interesting idea was combining the proper-
ties of the MACE and the MVSDF filters by deriving a
joint optimization criterion. 11 Recently, optimal
trade-off filters have been proposed by R6fr6gier'2 to
combine the properties of various SDF's. The mini-
mum noise and average correlation energy filter
proposed by Ravichandran and Casasent1 3 is also a
promising method for combining noise tolerance and
peak detection abilities in a filter.

The SDF-type filters noted above offer either sharp
correlation peaks or superior noise tolerance or a
combination of both. However, none of the filters
are explicitly optimized to offer good distortion toler-
ance. Indeed, the selection of a particular training
set determines the spectral characteristics of the
filter, which influences its ability to tolerate distor-
tions. In general, it was observed that filters that
produce broader correlation peaks (such as the early
SDFs14"5 ) offer better distortion tolerance. How-
ever, they may also provide poorer discrimination
between classes since these filters tend to correlate
broadly with low-frequency information in which the
classes may be difficult to separate. Distortion toler-
ance may also improve when the number of images in
the training set is increased. This represents one
method for reducing the sensitivity of the MACE
filter. However, filter synthesis becomes computa-
tionally difficult, and a sufficiently large number of
training images may not be available.

In this paper we describe a different approach to
filter design that removes hard constraints on the
training images and explicitly optimizes a criterion
for distortion tolerance. Most of the previous re-
search in SDF design has automatically assumed that
the correlation values at the origin are prespecified.
There is no need for such a constraining assumption.
In fact, once we realize that these prespecified values
are designated only for training images and not for
test images, the justification for using this assump-
tion decreases even more. Thus by removing the
hard constraints, we increase the number of possible
solutions, thus improving the chances of finding a
filter with better performance. In addition, the fil-
ters can be designed to offer good performance in the
presence of noise and background clutter while main-
taining relatively sharp correlation peaks for easy
detection of the output. Thus the three important
criteria noted above for the synthesis of correlation
filters can be addressed simultaneously. Section 2
describes the theoretical development of the proposed
new filters. It may be desirable in some applications
to restrict the variation in the filter output, and a
method for achieving this is described in Section 3.
A procedure for optimally combining distortion toler-
ance with noise and clutter suppression for the
proposed filter is discussed in Section 4. In Section 5
we discuss the effects of training the filter using the

phase-only versions of the training images. As will
be shown, this approach offers a number of advan-
tages that may be useful for some applications.
Specific examples in Section 6 illustrate the perfor-
mance of the filters. Finally, concluding remarks
are given in Section 7.

2. Derivation of the Filter Equation
The primary objective of correlation filters is distor-
tion-tolerant recognition of objects in clutter. This
problem is easier to solve for in-plane rotations and
scale changes, and several solutions have been pro-
posed.3"6 However, the prevalent method for han-
dling out-of-plane distortions is to use a training set
of representative views of the object. While this
makes good intuitive sense, it is unclear how the
training set should impart useful information to the
filter. Traditionally in the design of SDF-type corre-
lation filters, linear constraints are imposed on the
training images to yield a known value at specific
locations in the correlation plane. However, placing
such constraints in the correlation plane satisfies
conditions only at isolated points in the image space
but does not explicitly control the filter's ability to
generalize over the entire domain of the training
images. Various filters exhibit different levels of
distortion tolerance even with the same training set
and constraints.

In this paper we adopt a statistical approach to
filter design. We show that, in addition to yielding
sharp peaks and being computationally simple, the
proposed filters offer improved distortion tolerance.
The reason lies in the fact that we do not treat
training images as deterministic representations of
the object but as samples of a class whose characteris-
tic parameters should be used in encoding the filter.
We assume that the training set consists of N images,
each of the true and the false class, and that each
image of size d, x d2 contains d = d1d2 pixels. In
general, the number of images for the true and the
false classes can be different. The ith training image
for the true class is denoted by xi(m, n) and is
represented in the frequency domain by a d x 1
vector xi, obtained by lexicographically reordering its
two-dimensional discrete Fourier transform, Xi(k, 1).
Similarly, the false-class training images, yi(m, n), are
represented in vector notation in the frequency do-
main as yi. We denote the filter by the d x 1 vector
h. We then obtain the two-dimensional filter H(k, 1)
by rearranging h into a two-dimensional image.
Matrices are denoted by upper-case and vectors by
lower-case characters.

The correlation of the ith training image and the
filter can be expressed in the frequency domain as

gi = Xih, (1)

where Xi is a d x d diagonal matrix containing the
elements of xi. Here, gi denotes the discrete Fourier
transform of the ith correlation output. The devia-
tion in the shape of the correlation plane with respect
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to some ideal shape vector f is quantified by the
average squared error (ASE), defined as

1 N

ASE = NV (gi - f )+(gi - f). (2)

Thus ASE is a measure of distortion with respect to
reference shape f, which is free to be chosen as
desired.

In fact, shape vector f can be treated as a free
parameter in the distortion minimization problem.
In the design of the minimum-squared-error (MSE)
SDF,17 f was specified as Gaussian or ringlike shapes
in order to sculpt the correlation surface into these
forms. Here, we are interested in the choice of f that
causes least variation among the correlation planes
and offers minimum ASE. To find the optimum
shape fopt, we set the gradient of ASE with respect to f
to zero and obtain

2 N
Vf (ASE) = - (gi - f) = 0

or
= N

fopt = i - i g

where
N

g = - iE Xih = h

is the average correlation plane and X = (1/N) 1 Xi
is the average training image expressed as a diagonal
matrix. We thus see that of all possible reference
shapes, using the average correlation plane g offers
the smallest possible ASE and hence the least distor-
tion (in the squared-error sense) among the correla-
tion planes.

Accordingly, we substitute f = - in the ASE
expression and obtain the average similarity measure
(ASM), defined below as

N
ASM = NIE (i - R)+gi - )

N
N ic (Xih - Xh)+(Xih - Xh)

is a diagonal matrix measuring the similarity of the
training images to the class mean in the frequency
domain. For example, if all training images are
identical, then S would an all-zero matrix. From
Parseval's theorem it is easy to show that the average
squared distance from the correlation planes to their
mean is the same as that defined by Eq. (6) in the
frequency domain.

ASM is one possible metric for distortion since it
represents the average deviation of the correlation
planes from the mean correlation shape, g. ASM is
also a measure of the compactness of the class. If
filter h is viewed as a linear transform, then ASM
measures the distances of the training images from
the class center under this transform. Minimizing
ASM therefore leads to a compact set of correlation
planes that resemble each other and exhibit the least
possible variations. The distortions of the object in
the input plane are represented by the training
images, xi. These distortions are reflected in the
output as variations in the structure and shape of the
corresponding correlation planes, gi, and are quanti-
fied by ASM. If the filter successfully reduces the
distortions, then distorted input images should yield
similar output planes, leading to a small value of
ASM. Conversely, if ASM is minimum and il is well
shaped by design, then all true-class correlation planes
are expected to resemble il and to exhibit well-shaped
structures.

We now formulate our filter design criteria. We
do not constrain the peak of the average correlation
plane to a prespecified value. Instead, we try to
make it as large as possible. Specifically, the inten-
sity of the peak of the average correlation plane may
be written as

Io, 0)12 = (h+R)2 = h'R'h. (8)

Here, we assume without loss of generality that the
peak occurs at the origin of the correlation plane.
We explicitly optimize the behavior (e.g., maximize
the peak value) of the average correlation plane while
minimizing ASM. If g exhibits a sharp well-defined
peak with low sidelobes, then minimizing ASM should
cause the rest of the class to also follow this behavior
and to exhibit similarly shaped correlation planes.
Therefore the criteria we optimize to improve distor-
tion tolerance is

J(h) = h'S h

= h+ N (X, - X)*(Xi - X) h

= h+S.h,

where
N

S.= N a ( - )*(xi - )Nit,

(9)

and is referred to as the average correlation height
criterion. The filter of interest maximizes this crite-
rion and thus is called a maximum average correla-

(6) tion height (MACH) filter. The MACH filter maxi-
mizes the relative height of the average correlation
peak with respect to the expected distortions. The
MACH filter yields a high correlation peak in re-

(7) sponse to x and ensures that other samples of the
true class exhibit similar behavior.
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Before deriving the filter that maximizes J(h), we
state the considerations for the second class. We
want to reject the false class by suppressing its
average correlation energy (ACE), given by

N
ACE = K I h+YiYh

= h+( : YiY*)h = h+Dyh, (10)

where Yi is a diagonal matrix containing the elements
of yi and Dy = (1/N) 2N=1 YiY"* is the diagonal matrix
containing the average power spectrum of the false
class.

It should be noted that the defintion of correlation
energy is not restricted to the false class only. In
fact, the correlation energy for the true class can be
defined as h+Dh, where D, = (1/N) EN=I XiX*. The
original formulation of the MACE filter uses D =
D. + Dy (i.e., the average correlation energy over the
entire training set), but trivial variations are possible
by use of either D. or Dy separately. The choice of
terms for the correlation energy in MACE and similar
filters depends on the nature of the application.

Here, we require the filter to reject the Yi images by
reducing the false-class ACE. This is done by maxi-
mizing the modified performance criterion

h+xx+h
J(h) = h+Sh + h+Dyh

(11)
h+(+h

h+(S + D)h
At first glance, the expression in Eq. (11) may appear
similar to the Fisher ratio. However, the Fisher
ratio applies to values at only one point in the
correlation plane (presumably the peak) but does not
control the rest of the correlation plane. The denomi-
nator of Eq. (11) measures similarity and energy over
the entire correlation plane and has significantly
different physical interpretation from the terms in
the Fisher ratio. The latter uses full covariance
matrices, whereas Dy and S. are both diagonal. The
proposed approach does not suffer from the draw-
backs that render the Fisher criterion impractical for
image-processing applications. The Fisher ratio and
J'(h) are merely similar in mathematical form, bet-
ter known as the Rayleigh quotient, whose optimiza-
tion leads to a very different solution in each case.

Since maximizing J'(h) results in a small denomi-
nator, the filter will reduce both ASM and ACE, as
desired. The optimum filter is found by setting the
gradient of J'(h) with respect to h to zero, or

Vh[ J'(h)] =
3x+h

h+(S + Dy)h

(h1Kxxh)(S. + Dy)h
[h+(Sx + Dy)h]2

(12)

This can be simplified to

I+ S)h [xxh - X(Dy + S,)h] = 0,

where

h+-x+h (4
h+(S. + DY)h (14)

is a scalar identical to J'(h). Equating the term
inside the brackets in Eq. (13) to zero, we get

-x+h - X(Dy + S.)h = 0, (15)

or

(DY + SX)-1Rx'h = Xh. (16)

In going from Eq. (15) to Eq. (16), we have assumed
that (Dy + S.) is invertible. Otherwise, Eq. (15)
represents a generalized eigenvalue problem. If
(Dy + S.) is invertible, h must be an eigenvector of
(Dy + Sx)-'xF+ with corresponding eigenvalue X.
Since X is identical to J(h), as shown in Eq. (14), we
select the eigenvector corresponding to the largest
value of X to maximize J(h). In general, a full-rank
d x d matrix has d nonzero eigenvalues. However,
since x+ is the outer product of a vector, it is of unit
rank, and (Dy + Sx)- 'x+ has only one nonzero eigen-
value. The corresponding eigenvector is then the
obvious choice for the optimum filter and can be
found by substituting +h = ot (a scalar) in Eq. (16) so
that

a(DY + S) -1X= Xh, (17)

or

h = c(Dy + S,)-'-X (18)

where c = a/X is a scale factor. It is easy to see from
Eq. (11) that the scale factor c has no effect on the
performance criterion J'(h). Thus the MACH filter
in Eq. (18) is clearly proportional to (Dy + S,)-'i, the
transformed true-class mean image.

Interestingly the MACH filter depends only on
simple class statistics such as the mean image, the
average power spectrum matrix, and the ASM matrix.
Matrix inversions are simple since both Dy and S, are
diagonal. In this sense the MACH filter is easier to
compute than the MACE filter since the latter re-
quires the inversion of a fullN x N matrix. Further,
only the mean and second-order statistics of each
class need to be stored for on-line filter synthesis,
which may be useful when dealing with large data
bases of training images. The necessary statistics
can be estimated off-line with an adequate number of
class samples.

An interesting property of the MACH filter is that
sharp peaks are obtained for true-class images even
though their correlation energy is not explicitly mini-
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mized. The reason can be understood by expanding
the ASM expression as

Section 2), the filter expression after dropping the
ASM term S, becomes

ASM = h+[K (Xi - x)*(X. - X) h

= h+( X xi*)h - h+XX*h

= h+Dh - h+XX*h = ACE - h+XX*h.

hmach Dx

The MACE filter9 expression is

hmace = Dx;'X(X'Dx;'X)-lu = D-'Xb

(19)

Clearly, ASM includes the ACE term h+Dh, and
therefore its minimization influences the correlation
energies of the true-class images. In fact, the mini-
mization of ASM can be viewed as a generalization of
the MACE criterion. If h+ XX*h is small, then
ASM ACE, and the performances of filters based
on the two criteria are comparable.

3. Relation Between Maximum Average Correlation
Height, Minimum-Squared-Error Synthetic Discriminant
Function, and Minimum Average Correlation
Energy Filters
We now illustrate the direct relation of the MACH
filter to the MSE SDF and the MACE filter. If the
correlation energy term Dy is deleted from the expres-
sion of the MACH filter, we obtain

hmach = Sx x. (20)

Let X = [x1 x2 x3 .. .XN] be the d x N data matrix
containing the N training vectors as its columns.
It is easy to show that the expression for the MSE
SDF17 using the optimum shape in Eq. (4) for sculpt-
ing the correlation surface is

hmse = SX 'X(X+S. 'X)-lu
= SXa

(22)

(23)

where x is again the weighted average image with
weights b (X+Dx'X)-lu chosen to satisfy hard
constraints on the training images. As evident in
Eqs. (22) and (23), the MACH filter is of the same
form as the MACE filter when the ASM term is
dropped. Both filters minimize the same criterion
(namely, ACE) although the latter does so under
constraints. The special MACH filter in Eq. (22)
obtained by dropping the ASM term is therefore
referred to as the unconstrained MACE filter or the
UMACE filter.

4. Controlling Variance of Correlation Peaks
The MACH filter described in Section 2 is designed to
permit variations in the correlation-peak values.
The ASM term is defined over the entire correlation
plane and controls the overall similarity of their
shapes but is not a good measure for tightly control-
ling the variations at one point (e.g., the origin). In
some applications it may be necessary to reduce the
variations in the correlation peaks significantly.
Linear constraints make the peak values identical
(resulting in zero variation) but unnecessarily restrict
the filters. The approach proposed here is a compro-
mise between the usual method of hard constraints
and the flexible optimization described in Section 2.

The correlation output at the origin that is due to
the ith training image is

(21)S-lx

where x is a weighted average of the training images
and a = (X+S 1lX)-lu is the weight vector necessary
to satisfy the hard constraints on the training images.
From Eqs. (20) and (21) we see that the expression for
the MACH filter closely resembles that for the MSE
SDF when the correlation energy term is dropped.
The latter is a constrained version of the former and
is obtained by minimizing the same criterion, namely,
ASM. Therefore the special MACH filter in Eq. (20)
without the correlation energy term is referred to as
the unconstrained MSE SDF. As shown in Eq. (19),
the minimization of the ASM criterion indirectly
influences the ACE criterion. Consequently the un-
constrained MSE SDF is also expected to yield well-
defined peaks even though the filter is based on the
minimum ASM criterion, and, not explicitly, on
MACE.

The conventional MACE filter is also related to the
MACH filter in a similar way. Assuming the defini-
tion of correlation energy in terms of the X data (see

(24)ci = hxi, i = 1, 2, . .. , N.

The average correlation output at the origin is

1 N
C = -K c = h+K,wher xi th avrag trinigiae=Tevrac (25)

where R is the average training image. The variance
in the correlation outputs is then given by

2 = i 12

h+(x, - k)(xi - x)+h

= h+ I h, (26)

where
1 N

Xx = N I (i - O)xi - )+i=l
(27)
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is an estimate of the class covariance matrix. Here,
A., is a d x d matrix and not necessarily of diagonal
form. Since A, is computed from N outer products
and since the average vector x is subtracted from all
xi values, the rank of A,, will be at most N - 1. Since
d >> N in general, this matrix is singular. However,
the MACH performance criterion can be successfully
modified with U2 , as we now show.

The modified criterion that includes the variations
in the peak values is defined as

J"(h) =r2 + ACE

h+jx+h
h~~Ah~h~~D~h (28)h+ );, h + h+DYh (8

The filter that maximizes J"(h) in Eq. (28) yields a
large peak in response to average image x while
reducing the variations in the output at the origins of
the correlation planes produced by the N training
images. Sharp peaks are expected as a result of this
optimization since the average correlation energy is
also reduced. As shown in Section 2, the optimum
filter is found by setting the gradient of J"(h) with
respect to h to zero, which leads to

xx+h = (A, + DY)h. (29)

Thus J"(h) is maximized by choosing h to be the
dominant eigenvector of ( + Dy)-'x+ [assuming
that (A, + Dy) is invertible], which is

h = c(lx + Dy)-'R, (30)

where the scale factor c does not affect J"(h). The
filter expression in Eq. (30) is referred to as the
generalized MACH (GMACH) filter. Since Y is a
full matrix, computing the inverse in Eq. (30) can be
cumbersome. Fortunately, since A. is computed from
N outer products, the required inverse can be com-
puted in N steps.18

Here, we have described a process using a2 instead
of ASM for controlling the variations in the correla-
tion-peak values. ASM characterizes how similar
the correlation surfaces are, whereas a2 characterizes
how similar correlation-peak values are. Although
the resulting matrices are not diagonal, the filter can
be computed with an efficient algorithm.

statement of the problem would be

Maximize h+xx+h
h

subject to h+ Sh = 8 and h+Dyh = E0, where o and E0
are scalars. We form the Lagrange functional

+(h) = h+xx+h - a(h+S.h - ) - P(h+Dyh - EO).
(31)

Setting the gradient of 4+(h) with respect to h to zero
yields

(xx+ - aS. - DY)h = 0, (32)

or
(oSs + Dy)h = x(xlh), (33)

or
h = k(otSx + I3Dy)-'i. (34)

Absorbing constants together and setting y = p/a, we
see that the optimal filter for fixing the performance
criteria at specific values is of the form

h = c(S. + Dy)-lx. (35)

Here, y is a user-selected parameter. Small y leads
to more similar correlation planes but with larger
background intensities, whereas larger values of y
may yield more fluctuations in the correlation plane
shape but low correlation energies. Essentially, set-
ting a = 0 in Eq. (33) [or y large in Eq. (34)] yields the
UMACE filter described in Section 3. Similarly
choosing y = = 0 leads to the unconstrained MSE
SDF, also described in Section 3. The MACH filter
can be made to trade off between these two filters by
variation of the value of y.

6. Amplitude-Normalized Filter Designs
A number of interesting simplifications occur if the
Fourier transforms of the training images are ampli-
tude normalized. This is the same as using phase-
only training images. In general the Fourier trans-
form of a training image is complex and can be
represented as

Xi(k, ) = A(k, )exp[j+(k, )], (36)

5. Optimal Trade-Off Design of Minimum-Average
Correlation Height Filters
An important consideration in the design of correla-
tion filters is the trade-off between various perfor-
mance criteria.' 0 "'1 Rfr6gier has suggested an opti-
mal approach'2 to trade off one performance measure
against another. Here, we describe the procedure
for trading off between the ASM, ACE, and cr2 criteria
in the design of the MACH filter.

Let us suppose we wish to design h to maximize I c 12
while holding ASM and ACE at fixed values. The

where A(k, 1) = IXi(k, 1)I is the magnitude of the
Fourier transform and 4(k, 1) is its phase. We nor-
malize each training image such that A(k, 1) = 1 for
all k and 1, which yields the amplitude-normalized
training images, given by

Xi(k, ) = exp[ j(k, )]. (37)

The X(k, 1) images essentially retain only phase
information. The amplitude-normalized images are
lexicographically reordered as usual to construct the
vectors xi, and the filter is designed as outlined in
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Sections 2-5. We now discuss the simplifications as
a result of this process.

First, we note that the correlation matrix Dy re-
duces to the identity matrix, I. Therefore the corre-
lation matrix becomes class independent, and the
correlation energy expression is always the same for
all classes, including those not included in the train-
ing set. The simplified expression for the average
correlation energy is

ACE = h+Ih = h+h. (38)

The expression in Eq. (38) holds true for all images,
including background clutter and noise. Thus iden-
tity matrix I serves as a generic model for the power
spectrum for all classes when magnitude normaliza-
tion is used. Therefore it becomes unnecessary to
include images of a specific false class when optimiz-
ing the simplified MACH criterion

h+5x+h
h+(S. + 8I)h (3)

The MACH filter is then given by

h = (S. + I)-1. (40)

This filter can be expected to reject all images and
patterns that do not belong to the true class since
their correlation energies are all described by the
same expression when magnitude normalization is
used. The true-class information is contained in the
ASM expression, which unlike the ACE remains class
dependent. Magnitude normalization can therefore
be important in applications in which the false classes
are too many to specifically describe or are unknown
or when every occurrence of background clutter
cannot be modeled. In all such cases the correlation
energy information is captured by the generic model
in Eq. (38) and minimized by the filter expression in
Eq. (40).

Another interesting simplification results in the
expression of the MACE and UMACE filters. Since
Dy = I, the MACE filter becomes the straightforward
projection SDF based on the magnitude-normalized
images, i.e.,

hmace = X(X+X)'u.

since DY = I. Thus the remarkable conclusion that
the optimum filter is the average of the training
images is inevitable when magnitude normalization is
used. The theoretical framework of MACH filters
presented in this paper supports the optimality of this
simple solution, which may be useful in a number of
applications.

7. Simulation Results
We used a data base of 35 tank images (each having
128 x 128 pixels) for our numerical tests. These
images were taken at 10° intervals in aspect. Ex-
ample broadside and end-on views are shown in Figs.
1(a) and 1(b), respectively. All filters were synthe-
sized by use of segmented training images with
background removed. All tests were done on images
containing the target in the background. Unless
stated otherwise, the odd-numbered images (i.e., im-
age 1, 3,. . ., 35) are used as training images, and all
35 images are used as test images.

The performance evaluation of the correlation fil-
ters is done as follows. When the input is the
centered target image, we want the output correla-
tion to peak at the origin. As the target moves in the

(a)

(41)

The conventional MACE filter whitens the training
images on the average, which would be the same as
magnitude normalization for the special case of a
single image in the training set. The processing
described here is an extension that whitens each
training image individually before synthesizing the
filter. Therefore although the expression in Eq. (41)
is simply an ordinary projection SDF, it is expected to
yield sharp correlation peaks. Further, when the
same processing is applied to the UMACE filter, its
expression reduces to

humace = (42)

(b)
Fig. 1. Target in background at (a) broadside view and (b) end
view.
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Table 1. Performancea of Unconstrained Correlation Filters and Improvements Compared with the Minimum Average Correlation Energy Filter

Filter Hits Near Hits Misses Hits and Near Hits Average PE
Type (PE < 2) (2 < PE < 10) (PE > 10) for Nontraining Images of Misses

Minimum average correlation energy 21 5 9 9 64.8
Unconstrained minimum average correlation energy 22 7 6 12 32.1
Generalized maximum average correlation height 22 7 6 12 32.2
Maximum average correlation height 22 8 5 13 25.2

aThe number of hits, near hits, or misses depends on the peak error (PE).

input scene, the correlation peak moves the same
way. However, the correlation peak may not be at
the origin because of distortions, noise, and other
impairments. The Euclidean distance from the ori-
gin to the actual correlation-peak position is called
the peak error (PE). Peaks with PE < 2 are treated
as hits, and peaks with 2 < PE < 10 are considered
near hits.

The image data base was partitioned into broadside
and end-view groups. Thus one training set and the
corresponding filter considered only side views,
whereas the other training set and its corresponding
filter dealt with only front and back views. The test
images were correlated with both filters, and the
higher of the two correlation peaks was used to
determine the PE.

In the first test all 35 images were used for training,
and the same 35 were used for testing the filters.
As expected, the performance was very good. All
four filters tested (i.e., MACE, UMACE, MACH, and
GMACH) resulted in 34 hits (i.e., PE < 2). The one
image that was not properly recognized contained a
sensor flaw in the data.

The above tests used the same data for training and
testing, leading to optimistic results. In the next
test we used only half the set (i.e., every other image)
for training, and we tested on all 35 images. The
results are shown in Table 1. In this table we show
the performance results for the four filters of interest.
We show for each filter the number of hits (i.e., PE <
2), the number of near hits (i.e., 2 < PE < 10), and
the number of misses (PE > 10). In addition, we
show the total number of nontraining images leading
to hits and near hits. This number is indicative of
the distortion tolerance of the filter being considered.
The last column lists average PE, obtained by averag-
ing the PE for the misses.

Amplitude normalization was used for the UMACE,
MACH, and GMACH filters. Their performance is
compared with the standard MACE filter. In Table
1 all new filters show improved performance (i.e., a
smaller number of misses, lower average PE, and
better distortion tolerance). Among the three new
filters the MACH filter leads to the smallest number
of misses, the lowest PE, and the highest distortion
tolerance (as measured by the number of hits and
near hits in the nontraining set). Thus MACH
appears to provide the best performance. However,
the other new filters (UMACE and GMACH) also
offer comparable performances.

6. Conclusion
The original MACE filter was the first SDF-type filter
to control explicitly the shape of the correlation plane.
This was achieved by minimizing correlation energy
subject to linear constraints. The MACE filter dem-
onstrated the use of diagonal matrices in the fre-
quency domain (which are easy to compute and to
invert) for practical filter synthesis. In spite of these
advances the MACE filter lacked good distortion
tolerance in general. To overcome this, we have
generalized the concept of the average correlation
energy (ACE) to a metric called the average similarity
measure (ASM) [see Section 2, Eq. (19)] in this paper.

The ASM criterion is the first explicit mathematical
treatment of distortion tolerance in correlation filters.
Its optimization leads to the MACH filter, which
minimizes distortions in a mean-square-error sense.
This results in the performance improvements shown
in Table 1. Other variations such as the UMACE
and GMACH filters also exhibit better performance
than the original MACE design.

We observed that amplitude normalization helps
correlation performance, although perhaps margin-
ally in some cases. Partitioning the data by aspect
provides useful MACH filter performance. Includ-
ing widely varying references in the training set
degrades filter performance in general. In certain
situations the simple UMACE filter can give perfor-
mance comparable to the MACH filter.

In summary, the filter design techniques presented
here relax the constraints on the correlation peak
while directly optimizing a criterion for distortion
tolerance. The resulting filters are easy to compute
and work well. We also outlined the method for
optimal trade-off between the different performance
criteria in the design of MACH filters, and we intro-
duced the idea of amplitude normalization to combat
the effects of unknown clutter.
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